Skip to content

Solahart Platinum Optimised PV Systems

se8000h-for-australia_no-lcd_no-connectors_2500x1500-2

Solahart Platinum Optimised PV Systems

Solahart Panels and SolarEdge Inverters

Available in several specifications to suit your exact requirements, our Solahart Platinum Optimised (PV) Systems maximise overall system performance by optimising the performance of each panel.

They are ideally suited for partial shading situations and enable you to closely monitor system performance.

Our systems are designed and engineered with every component carefully selected to meet Solahart’s stringent specifications, ensuring optimum performance and protection.

Solar Power (PV) System: Key Attributes

Solahart Solar Panel

(High Performance PV Technology)

High quality panels, internationally recognised for high output performance delivering you more power for each watt installed. Individually quality tested and proven product that will stand up to the harshest Australian conditions.

Battery Ready

(Start saving now and upgrade to battery storage)

Solahart Solar Power Systems can be upgraded  to include battery storage to increase the amount of power you can use from the sun. To learn more about battery storage systems, contact your local Solahart dealer.

Trusted Warranty

(Backed by Solahart experience)

We provide a trusted Solahart Warranty on all our products, which means years of trouble-free, worry-free energy.

Optimal Performance

(In low solar gain areas)

Most suitable for areas that receive low to medium levels of solar radiation.

The SolarEdge PV inverter is designed to work with the SolarEdge Power Optimizers that manage each solar panel separately. Consequently, the inverter is only responsible for DC to AC conversion which makes it a less complicated and more reliable solar inverter. A fixed string voltage ensures operation at the highest efficiency at all times, independent of string length and temperature.

Our new high-performance Solahart Silhouette® N-type Bifacial panel, with striking all-black finish, is the ideal solution for Australian homes thanks to its innovative and premium rectangular cell technology. 30-Year Solahart Product Warranty for peace of mind, plus, 30-Year Performance Guarantee for long term returns.*Read more here.

A SolarEdge Hybrid Inverter enables you to combine a  SolarEdge Energy Bank battery

The SolarEdge Power Optimizer connects to a single panel to monitor and control its performance, individually. This level of control mitigates all types of panel mismatch losses, from manufacturing tolerances to partial shading and improves the performance of the PV system. It allows for more flexible system designs and maximum space utilisation.

More power generated from system

Designed specifically to work with Power Optimizers

Independent, panel-level management and monitoring

Compatible with the SolarEdge Energy bank and Tesla Powerwall Batteries

screen-shot-2018-07-05-at-21641-pm

† Solahart Warranty Details:

  • Solar Panels: 30 years,
  • Inverter and Optimisers: 12 years,
  • Racking and Balance of System components: 5 years,
  • Labour: 5 years,
  • For full warranty details refer to the Solahart Owner’s Guide.

How Solar Power (PV) Systems Work

Solar power panels generate electricity from sunlight. The roof-mounted solar panels are made up of many photovoltaic (PV) cells. These cells collect the sun’s light and convert the energy into DC electricity. This is fed through an inverter and converted to 240V AC electricity to power your home.

The amount of electricity you can produce depends on the number and efficiency of the panels, the size of the inverter and the amount of sunlight in your location. Your home remains connected to the electricity grid, so when you generate more than you need, you can feed it into the grid or purchase more from the grid when you are not producing enough to meet your requirements.

how-solar-power-works

The Science Explained

solar-exposure-map

The amount of energy from the sun that falls on Earth's surface is enormous. All the energy stored in Earth's coal, oil, and natural gas reserves is matched by the energy from just 20 days of sunshine. Outside Earth's atmosphere, the sun's energy contains about 1,300 watts per square meter. About one-third of this light is reflected back into space, and some is absorbed by the atmosphere (in part causing winds to blow).

By the time it reaches Earth's surface, the energy in sunlight has fallen to about 1,000 watts per square meter at noon on a cloudless day. Averaged over the entire surface of the planet, 24 hours per day for a year, each square meter collects the approximate energy equivalent of almost a barrel of oil or 4.2 kilowatt-hours of energy every day. Deserts, with very dry air and little cloud cover, receive the most sun—more than six kilowatt-hours per day per square meter

How does a solar cell turn sunlight into electricity?

The sun's light (and all light) contains energy. Usually, when light hits an object the energy turns into heat, like the warmth you feel while sitting in the sun. But when light hits certain materials the energy turns into an electrical current instead, which we can then harness for power. Solar technology uses large crystals made out of silicon, which produces an electrical current when struck by light. Silicon can do this because the electrons in the crystal get up and move when exposed to light instead of just vibrating in place to make heat. The silicon turns a good portion of light energy into electricity.

The most important components of a PV cell are two layers of semiconductor material generally composed of silicon crystals. On its own, crystallized silicon is not a very good conductor of electricity, but when impurities are intentionally added—a process called doping—the stage is set for creating an electric current. The bottom layer of the PV cell is usually doped with boron, which bonds with the silicon to facilitate a positive charge (P). The top layer is doped with phosphorus, which bonds with the silicon to facilitate a negative charge (N).

When sunlight enters the cell, its energy knocks electrons loose in both layers. Because of the opposite charges of the layers, the electrons want to flow from the n-type layer to the p-type layer, but the electric field at the P-N junction prevents this from happening. The presence of an external circuit, however, provides the necessary path for electrons in the n-type layer to travel to the p-type layer. Extremely thin wires running along the top of the n-type layer provide this external circuit, and the electrons flowing through this circuit provide the cell's owner with a supply of electricity.

power-generation-02

Most PV systems consist of individual square cells averaging about six inches on a side. Alone, each cell generates very little power (approximately four watts), so they are assembled together as panels encased in glass and plastic to provide protection from the weather. These panels are either used as separate units or grouped into even larger arrays to form a solar power (PV) system.

Solar Power System Design

The Solahart Solar Power system is comprised of two main components; a string or array of photovoltaic panels and an inverter. The photovoltaic (PV) panels transform solar radiation into electrical energy in the form of direct current (DC). In order to utilise this energy and feed it back into the grid, the direct current is transformed into alternating current (AC) by the inverter. This conversion is also known as DC to AC inversion.

The alternating current generated by the inverter is fed into the main switchboard, which in turn is connected to the electricity grid. If the energy generated exceeds that required by property demands, your electrical network operator may allow the difference to be directly injected into the grid and become available to other users. Electric network operators can measure energy injected into the grid as gross (everything generated) or nett (excess generated). Injected energy may or may not be purchased by the local electrical network operator according to national and local standards and regulations.

howitworks_da7flarge_51b9_large
picture1 (1)

PV Panel Orientation & Inclination

To maximise system output, install panels at optimum orientation and inclination (tilt) angles. The specifics of this will depend on the installation location and must be calculated by a qualified system designer. The ideal angle for mounting a panel should result in the sun’s rays falling perpendicular (i.e. at a 90° angle) to the panel surface.

Panels should be installed in a shade-free position. Even minor or partial shading of the panels/array will reduce system output. A panel is considered shade free when it is both:

Free from shade or shadows all year round.

Exposed to several hours of direct sunlight, even during the shortest days.

Book Your Free In-Home Consultation!

Scroll To Top